This paper investigates the interface bonding of the novel carboxymethyl cellulose (CMC)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites, and the influence of coupling agents on the structure and properties of the biocomposites. The chemical… Click to show full abstract
This paper investigates the interface bonding of the novel carboxymethyl cellulose (CMC)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites, and the influence of coupling agents on the structure and properties of the biocomposites. The chemical structure, crystallisation behaviour and microstructure of the untreated and coupling agent treated biocomposites were examined by using FTIR, XRD and SEM respectively. The results suggested that maleic anhydride (MA) and vinyltrimethoxysilane (VTMS) covalently bonded to both CMC and PHBV macromolecules owing to their intrinsic multifunctionality, and promoted the distribution and embedment of the CMC in PHBV matrix, leading to a superior interfacial bonding of the resulted biocomposites. The enhanced interfacial bonding between the CMC and PHBV gave rise to a significant increase of tensile and flexural properties (i.e. tensile and flexural stress increased by up to 71% and 117% respectively, Young's and flexural modulus increased by up to 17% and 18% respectively) as well as thermal stability of the biocomposites.
               
Click one of the above tabs to view related content.