Catalytic conversion of lignin to certain aromatic compounds has been extensively studied but still has great challenges. Photocatalytic depolymerizing lignin is a very promising method to obtain valuable chemicals. Herein,… Click to show full abstract
Catalytic conversion of lignin to certain aromatic compounds has been extensively studied but still has great challenges. Photocatalytic depolymerizing lignin is a very promising method to obtain valuable chemicals. Herein, Zn4In2S7 (ZIS)-based photocatalyst was successfully synthesized by simply combining ZIS and graphene oxide (GO). Photocatalyst ZIS-100 can efficiently depolymerize organosolv lignin into phenols and ketones. The relative content of valuable compounds in the depolymerized product was increased by 2.5 times as compared that without photocatalyst. The photocatalyst can effectively break Cβ-O bonds in 2-phenoxy-1-phenylethanol (PP-ol, a model compound) and the conversion of PP-ol is 93.27%. Mechanism studies show that the thiol groups on the surface of ZIS-100 play an important role in the formation of Cα radical intermediates. Photocatalytic cleavage of Cβ-O bond mainly follows a one-step reaction mechanism through a self‑hydrogen transfer process. This study provides a new strategy for selectively breaking Cβ-O bond in lignin to form valuable chemicals.
               
Click one of the above tabs to view related content.