LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitraria tangutorum Bobr.-derived polysaccharides protect against LPS-induced lung injury.

Photo by almapapi from unsplash

Nitraria tangutorum Bobr. is suggested to be active in immunoregulation and antioxidation. However, the in vivo bioactivity of N. tangutorum Bobr.-derived polysaccharides (NTP) and their anti-inflammatory activity have not been… Click to show full abstract

Nitraria tangutorum Bobr. is suggested to be active in immunoregulation and antioxidation. However, the in vivo bioactivity of N. tangutorum Bobr.-derived polysaccharides (NTP) and their anti-inflammatory activity have not been addressed. In the present study, we extracted and purified polysaccharides from N. tangutorum Bobr. and determined their anti-inflammatory activities in vivo. HPGPC, UHPLC/DAD, and NMR analyses identified that the monosaccharide components of NTP were Man, Rha, GalUA, Glu, Gal, and Ara, with relative contents of 3.52%, 15.08%, 10.00%, 26.73%, 38.08%, and 6.59%, respectively. In mice with lipopolysaccharide (LPS)-induced Acute Lung Injury (ALI), NTP treatment attenuated tissue damage, inhibited the production of inflammatory cytokines, and promoted the anti-oxidative response. The supposed mechanism may be via suppressing the Toll-like receptor 4 (TLR4) signaling pathway. In conclusion, our study suggests a protective role of NTP in LPS-induced ALI by inhibiting inflammatory damage.

Keywords: lps induced; tangutorum bobr; derived polysaccharides; bobr derived; nitraria tangutorum

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.