LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of pullulan/carboxylated cellulose nanocrystal/tea polyphenol bionanocomposite films for active food packaging.

Photo by hudsoncrafted from unsplash

In this study, novel active films based on pullulan and carboxylated cellulose nanocrystal (C-CNC) incorporated with tea polyphenol (TP) was prepared by solution casting method. The effect of TP addition… Click to show full abstract

In this study, novel active films based on pullulan and carboxylated cellulose nanocrystal (C-CNC) incorporated with tea polyphenol (TP) was prepared by solution casting method. The effect of TP addition on the microstructural, mechanical, barrier, optical, functional properties of the resultant pullulan/C-CNC/TP (PC-TP) bionanocomposite films was systematically evaluated. Scanning electron microscopy showed that an appropriate TP adding was well distributed within the PC-TP bionanocomposite matrix. Fourier-transform infrared further revealed that new hydrogen bond was formed among the pullulan, C-CNC, TP. Addition of TP at an appropriate level (3%, w/w, on a dry basis of the weight of pullulan and C-CNC) led to stronger intermolecular interactions and more compact microstructure, and thus enhanced the water barrier properties, thermal stability and tensile strength of the resultant bionanocomposite films. Nevertheless, overloading of TP in the bionanocomposite films might produce some aggregations and thus have negative effects on their performance. In addition, the incorporation of TP significantly improved the UV-barrier properties, antioxidant activity and antimicrobial activity of PC-TP bionanocomposite films, while induced a decrease in the transmittance. These results revealed that PC-TP bionanocomposite films with TP at appropriate levels had potential to be used as active food packaging.

Keywords: tea polyphenol; pullulan carboxylated; cellulose nanocrystal; carboxylated cellulose; bionanocomposite films; pullulan

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.