LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.).

Photo from wikipedia

Herbaceous peony (Paeonia lactiflora Pall.) is a popular high-end cut flower, but stem bending caused by low stem strength severely decreases its quality. To enhance stem strength, the regulatory effects… Click to show full abstract

Herbaceous peony (Paeonia lactiflora Pall.) is a popular high-end cut flower, but stem bending caused by low stem strength severely decreases its quality. To enhance stem strength, the regulatory effects of exogenous silicon were investigated in P. lactiflora. The results showed that silicon application enhanced stem strength by increasing the thickness of secondary cell walls and the layers of thickened secondary cells. Moreover, more lignin accumulated, particularly G-lignin and S-lignin, and the activities of lignin biosynthetic enzymes increased with silicon application. In addition, based on transcriptome analysis, silicon application induced the expression of genes participating in lignin biosynthesis pathway. Among them, hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase gene (HCT1) was isolated from P. lactiflora and found to be mainly localized in the cytoplasm of cells. Overexpression of PlHCT1 increased the layers of thickened secondary cells and lignin accumulation in tobacco, resulting in enhanced stem strength and demonstrably straight stems. Finally, silicon content, lignin content and PlHCT1 expression in P. lactiflora cultivars with high stem strengths were totally higher than those in cultivars with low stem strengths. These results indicate that silicon application enhanced stem strength by promoting lignin accumulation in P. lactiflora, which has prospects for stem quality improvement in general.

Keywords: stem strength; strength; herbaceous peony; lignin accumulation

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.