The green biocatalyst nitrile hydratase (NHase) is able to bio-transform 3-cyanopyridine into nicotinamide. As the NHase reaction is exothermic, an enzyme with high activity and stability is needed for nicotinamide… Click to show full abstract
The green biocatalyst nitrile hydratase (NHase) is able to bio-transform 3-cyanopyridine into nicotinamide. As the NHase reaction is exothermic, an enzyme with high activity and stability is needed for nicotinamide production. In this study, we used sequence analysis and site-directed mutagenesis to generate a mutant of thermophilic NHase from Pseudonocardia thermophila JCM3095 with substantially enhanced activity and developed a powerful process for nicotinamide bio-production. The specific activity of αF126Y/αF168Y mutant was successfully increased by 3.98-fold over that of the wild-type enzyme. The half-life of such mutant was longer than 2 h, which was comparable to its parent enzyme. The relative activity of the αF126Y/αF168Y mutant after treatment with 1 M 3-cyanopyridine and 2 M nicotinamide was 73.2% and 63.7%, respectively, showing minor loss of its original stability. Structural analysis demonstrated that hydrogen bonds at the active site and α-β subunit interface of the NHase contribute to the improved activity and the maintenance of stability. Escherichia coli transformant harboring the mutant NHase was used for nicotinamide bio-production, yielding a nicotinamide productivity of 251.1 g/(L·h), which is higher than the productivity obtained using other NHase-containing strains and transformants. The newly established variant is therefore a promising alternative for the industrial production of nicotinamides.
               
Click one of the above tabs to view related content.