LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-light poly(lactic acid)/SiO2 aerogel composite foam: A fully biodegradable and full life-cycle sustainable insulation material.

Photo from wikipedia

In this study, a fully biodegradable ultra-light poly(lactic acid)/silicon dioxide (PLA/SiO2) aerogel nanocomposite with ultra-low thermal conductivity was successfully fabricated. PLA used was a produced from lactic acid, where the… Click to show full abstract

In this study, a fully biodegradable ultra-light poly(lactic acid)/silicon dioxide (PLA/SiO2) aerogel nanocomposite with ultra-low thermal conductivity was successfully fabricated. PLA used was a produced from lactic acid, where the lactic acid has been produced from carbohydrates. The rheological properties of PLA were enhanced by diphenylmethane diisocyanate (MDI). The foaming properties, cell density, cell size uniformity, mechanical properties and thermal conductivity and thermal diffusivity of PLA were further improved by SiO2 aerogel, and finally the ultra-low density foamed material was prepared by supercritical CO2. The density of PLA foam can be as low as 0.02 g/cm3 and the thermal conductivity as low as 0.02628 W/m·K. The PLA-based composites can be used in many fields such as thermal insulation, vibration damping and packaging, and can be fully biodegradable and sustainable throughout their life cycle, which meets the global trend of energy saving and emission reduction.

Keywords: lactic acid; light poly; fully biodegradable; ultra light; sio2 aerogel

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.