LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immobilization of Escherichia coli cells harboring a nitrilase with improved catalytic properties though polyethylenemine-induced silicification on zeolite.

Photo by nci from unsplash

In the chemical-biological synthesis route of gabapentin, immobilized Escherichia coli cells harboring nitrilase are used to catalyze the biotransformation of intermediate 1-cyanocyclohexaneacetonitile to 1-cyanocyclohexaneacetic acid. Herein, we present a novel… Click to show full abstract

In the chemical-biological synthesis route of gabapentin, immobilized Escherichia coli cells harboring nitrilase are used to catalyze the biotransformation of intermediate 1-cyanocyclohexaneacetonitile to 1-cyanocyclohexaneacetic acid. Herein, we present a novel cell immobilization method, which is based on cell adsorption using 75 g/L Escherichia coli cells and 6 g/L zeolite, cell crosslinking using 3 g/L polyethylenemine and biomimetic silicification using 18 g/L hydrolyzed tetramethylorthosilicate. The constructed "hybrid biomimetic silica particles (HBSPs)" with core-shell structure showed a specific activity of 147.2 ± 2.3 U/g, 82.6 ± 2.8% recovery of nitrilase activity and a half-life of 19.1 ± 1.9 h at 55 °C. 1-Cyanocyclohexaneacetonitrile (1.0 M) could be completely hydrolyzed by 50 g/L of HBSPs at pH 7.5, 35 °C in 4 h, providing 92.1 ± 3.2% yield of 1-cyanocyclohexaneacetic acid. In batch reactions, the HBSPs could be reused for 13 cycles and maintained 79.9 ± 4.1% residual activity after the 10th batch, providing an average product yield of 92.6% in the first 10 batches with a productivity of 619.3 g/L/day. In addition, multi-layer structures consisting of silica coating and polyethylenemine/glutaraldehyde crosslinking were constructed to enhance the mechanical strength of immobilized cells, and the effects of coating layers on the catalytic properties of immobilized cells was discussed.

Keywords: escherichia coli; cells harboring; harboring nitrilase; coli cells

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.