LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: A proteomics study.

Photo from wikipedia

Demyelination is observed in animal models of intractable epilepsy (IE). Epileptogenesis damages the myelin sheath and dysregulates oligodendrocyte precursor cell (OPC) development. However, the molecular pathways regulating demyelination in epilepsy… Click to show full abstract

Demyelination is observed in animal models of intractable epilepsy (IE). Epileptogenesis damages the myelin sheath and dysregulates oligodendrocyte precursor cell (OPC) development. However, the molecular pathways regulating demyelination in epilepsy are unclear. Here, we predicted the molecular mechanisms regulating demyelination in a rat model of lithium-pilocarpine hydrochloride-induced epilepsy. We identified DGKA/Mboat2/Inpp5j and NOS/Keratin 28 as the main target molecules that regulate demyelination via glycerolipid and glycerophospholipid metabolism, phosphatidylinositol signaling, and estrogen signaling in demyelinated forebrain slice cultures (FSCs). In seizure-like FCSs, the actin cytoskeleton was regulated by Cnp and MBP via Pak4/Tmsb4x (also known as Tβ4) and Kif5c/Kntc1. Tβ4 possibly prevented OPC differentiation and maturation and inhibited MBP phosphorylation via the p38MAPK/ERK1/JNK1 pathway. The MAPK signaling pathway was more likely activated in seizure-like FCSs than in demyelinated FCSs. pMBP expression was decreased in the hippocampus of lithium-pilocarpine hydrochloride-induced acute epilepsy rats. The expression of remyelination-related factors was suppressed in the hippocampus and corpus callosum in lithium-pilocarpine hydrochloride-induced epilepsy rats. These findings suggest that the actin cytoskeleton, Tβ4, and MAPK signaling pathways regulate the decrease in pMBP in the hippocampus in a rat model of epilepsy. Our results indicate that regulating the actin cytoskeleton, Tβ4, and MAPK signaling pathways may facilitate the prevention of demyelination in IE.

Keywords: epilepsy; demyelination; regulating demyelination; lithium pilocarpine

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.