An invertebrate sialyltransferase, cST3Gal-I, identified from the sea squirt Ciona savignyi, was functionally characterized in vitro using recombinant enzyme expressed in yeast strains. cST3Gal-I was localized to the Golgi membrane… Click to show full abstract
An invertebrate sialyltransferase, cST3Gal-I, identified from the sea squirt Ciona savignyi, was functionally characterized in vitro using recombinant enzyme expressed in yeast strains. cST3Gal-I was localized to the Golgi membrane when expressed in Saccharomyces cerevisiae. Enzymatic characterization for substrate specificity and kinetic property indicate that cST3Gal-I prefers O-glycans, rather than N-glycan, of asialoglycoproteins as substrates. Interestingly, C. savignyi sialyltransferase exhibited effectively Neu5Ac transfer to core 1 O-glycan, Gal β(1,3)GalNAc, compared to orthologous human glycosyltransferase. Further, it is shown that cST3Gal-I catalyzes the formation of α(2,3)-linkage, through lectin blot analysis with Maackia amurensis lectin and by linkage-specific sialidase treatments. The putative active sites of cST3Gal-I for putative acid/base catalysts and sialic acid acceptor/donor substrate bindings were also identical to the counterpart residues of a mammalian enzyme, porcine ST3Gal-I, as predicted through homologous structure modeling. These results could imply that an ancestral tunicate ST3Gal-I in C. savignyi would prefer O-glycan onto glycoproteins as its sialic acid acceptor than vertebrate enzymes.
               
Click one of the above tabs to view related content.