LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differentiated structure of synthetic glycogen-like particle by the combined action of glycogen branching enzymes and amylosucrase.

Photo from wikipedia

Glycogen-like particles (GLPs) were built up from sucrose by applying de novo one-pot enzymatic process of amylosucrase (ASase; 6 U·mL-1) and glycogen branching enzymes (GBEs; 0.001 and 0.005 U·mL-1). Due to different… Click to show full abstract

Glycogen-like particles (GLPs) were built up from sucrose by applying de novo one-pot enzymatic process of amylosucrase (ASase; 6 U·mL-1) and glycogen branching enzymes (GBEs; 0.001 and 0.005 U·mL-1). Due to different chain-length transferring patterns of GBEs, structurally differentiated GLPs were synthesized. Yields of GLPs synthesized at pH 7.0 and 30 °C were improved by increasing the GBE/ASase ratio. Branching degrees of GLPs obviously was increased along with the ratio of GBEs, of which result was directly supported by shortened branch-chain length with greater GBE activity. Long branch chains seemed to play as efficient acceptor molecules to bind newly transferred branch chains especially at lower ratio of GBE/ASase, resulting in greater molecular weight and size of GLP with higher proportion of them. Molecular weight, size, and density of GLPs were ranged from 7.37 × 105 to 1.94 × 108 g·mol-1, from 23.70 to 52.65 nm, and from 7.99 to 374.32 g·mol-1·nm-3, respectively. By increasing GBE/ASase ratio, more compact GLP architecture was fabricated due to increased weight and reduced size with exception of a unique GBE. GLPs were efficiently synthesized by two different glycosyltransferases, and their chemical structures were controllable by source and ratio of GBEs due to their different branch-chain transferring specificity.

Keywords: glycogen like; glycogen; glycogen branching; ratio; branching enzymes; asase

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.