The NODULE-INCEPTION-like protein (NLP) is a plant-specific transcription factor (TF) family that plays an important role in both signal transduction and nitrate assimilation. However, the NLP gene family in Chinese… Click to show full abstract
The NODULE-INCEPTION-like protein (NLP) is a plant-specific transcription factor (TF) family that plays an important role in both signal transduction and nitrate assimilation. However, the NLP gene family in Chinese cabbage (Brassica rapa) has yet to be studied. Here we identified 17, 16, and 32 NLP genes in Chinese cabbage, Brassica oleracea, and Brassica napus, respectively. We found that duplication of those NLP genes almost always originated from genome-wide duplication events. Further analysis (using Arabidopsis as a reference) revealed that the NLP family in Chinese cabbage and B. oleracea was characterized by direct expansion caused by whole-genome duplication. By contrast, indirect expansion characterized B. napus, which arose from hybridization and fusion of the two species. In addition, phylogenetic and homology analyses showed that the Brassica NLP gene family has been highly conserved in evolution. Finally, we also identified optimal codons for four studied species. Altogether, through comparative genome analysis methods, we presented compelling evidence that triplication is the main driving force for the NLP TF family's evolution in Chinese cabbage and related Brassica plants, a process evidently highly conserved. This work will help in better understanding the impact of genome-wide duplication on gene families of plants.
               
Click one of the above tabs to view related content.