LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Glycol chitosan/iron oxide/polypyrrole nanoclusters for precise chemodynamic/photothermal synergistic therapy.

Photo by eriic from unsplash

Noninvasive photothermal therapy (PTT) represents a promising direction for more modern and precise medical applications. However, PTT efficacy is still not satisfactory due to the existence of heat shock proteins… Click to show full abstract

Noninvasive photothermal therapy (PTT) represents a promising direction for more modern and precise medical applications. However, PTT efficacy is still not satisfactory due to the existence of heat shock proteins (HSPs) and poorly targeted delivery. Herein, the design of a nanosystem with improved delivery efficacy for anticancer treatment employing the synergetic effects of reactive oxygen species (ROS)-driven chemodynamic therapy (CDT) to inactivated HSPs with photothermal-hyperthermia was therefore achieved through the development of pH-targeting glycol chitosan/iron oxide enclosed core polypyrrole nanoclusters (GCPI NCs). The designed NCs effectively accumulated toward cancer cells due to their acidic microenvironment, initiating ROS generation via Fenton reaction at the outset and performing site-specific near infrared (NIR)-photothermal effect. A comprehensive analysis of both surface and bulk material properties of the CDT/PTT NCs as well as biointerface properties were ascertained via numerous surface specific analytical techniques by bringing together heightened accumulation of CDT/PTT NCs, which can significantly eradicate cancer cells thus minimizing the side effects of conventional chemotherapies. All of these attributes act in synergy over the cancer cells succeeding in fashioning NC's able to act as competent agents in the MRI-monitored enhanced CDT/PTT synergistic therapy. Findings in this study evoke attention in future oncological therapeutic strategies.

Keywords: polypyrrole nanoclusters; iron oxide; therapy; synergistic therapy; glycol chitosan; chitosan iron

Journal Title: International journal of biological macromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.