LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr(VI) from wastewater.

Photo from wikipedia

A novel lignin-based hierarchical porous carbon (L-HPC) was prepared to remove Cr(VI) from water by using industrial alkali lignin through simple hydrothermal-induced assembly and alkali activation strategy. The adsorbent were… Click to show full abstract

A novel lignin-based hierarchical porous carbon (L-HPC) was prepared to remove Cr(VI) from water by using industrial alkali lignin through simple hydrothermal-induced assembly and alkali activation strategy. The adsorbent were characterized by SEM-EDS mapping, TEM, BET, XPS, FTIR, Raman spectroscopy and zeta potential. The characterization results indicated that L-HPC contained three-dimensional connected channels and many adsorbing N, O and other adsorption groups, which is very beneficial for Cr(VI) adsorption. The kinetics showed that the L-HPC adsorption of Cr(VI) was chemical adsorption and mainly controlled by intraparticle diffusion. The isotherm and thermodynamics indicated that L-HPC adsorption of Cr(VI) conforms to the Freundlich model, L-HPC is a kind of multimolecular layer adsorbent, and the adsorption capacity of Cr(VI) by L-HPC was 887.8 mg/g, which was significantly higher than values for other adsorbents. Ion competition simulation and actual water body tests showed that L-HPC exhibits high selectivity for Cr(VI) adsorption, adsorption cycle experiments show that L-HPC maintains over 83% performance after 12 cycles. Cost analysis shows that L-HPC is suitable for mass production. Therefore, L-HPC is a Cr(VI) adsorbent with high efficiency, high selectivity, and high reusability, which is broadly applicable and shows favorable prospects.

Keywords: novel lignin; porous carbon; hierarchical porous; lignin based; based hierarchical; adsorption

Journal Title: International journal of biological macromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.