Chitin nanofiber has potential application as antibacterial nanocomposite material because of its inherent biocompatibility, biological activity, amino containing macromolecular structure and nano-size effect. Molybdenum disulfide quantum dots (MoS2QDs) were uniformly… Click to show full abstract
Chitin nanofiber has potential application as antibacterial nanocomposite material because of its inherent biocompatibility, biological activity, amino containing macromolecular structure and nano-size effect. Molybdenum disulfide quantum dots (MoS2QDs) were uniformly bonded on partially deacetylated chitin nanofibers (DEChNs) by hydrothermal reactions. The antibacterial properties of MoS2QDs/DEChN against Escherichia coli were detected under different conditions. When the antibacterial agent was fixed at 200 μg/mL, the survival rates of bacteria were 2.77% (pH = 4), 5.58% (pH = 5) and 7.83% (pH = 6), which were lower than those in the DEChN groups. Unlike DEChN, which only had excellent antibacterial activity under acidic conditions (pH < 5), the combination of DEChN and MoS2QDs had antibacterial activity close to neutral conditions, with a bacteriostatic rate > 90%. When TEMPO-oxidized cellulose nanofibers (TOCN) were applied for the preparation of MoS2QDs/TOCN, they did not show obvious antibacterial ability, which proved the positive role of DEChN and its amino groups. The MoS2QDs/DEChN assembled film could be applied to preserve meat by delaying spoilage. The current study might inspire new ideas for designing food packaging based on the prepared MoS2QDs/DEChN films.
               
Click one of the above tabs to view related content.