LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials

Photo from wikipedia

Reliable models of the thermodynamic properties of materials are critical for industrially relevant applications that require a good understanding of equilibrium phase diagrams, thermal and chemical transport, and microstructure evolution.… Click to show full abstract

Reliable models of the thermodynamic properties of materials are critical for industrially relevant applications that require a good understanding of equilibrium phase diagrams, thermal and chemical transport, and microstructure evolution. The goal of thermodynamic models is to capture data from both experimental and computational studies and then make reliable predictions when extrapolating to new regions of parameter space. These predictions will be impacted by artifacts present in real data sets such as outliers, systematics errors and unreliable or missing uncertainty bounds. Such issues increase the probability of the thermodynamic model producing erroneous predictions. We present a Bayesian framework for the selection, calibration and quantification of uncertainty of thermodynamic property models. The modular framework addresses numerous concerns regarding thermodynamic models including thermodynamic consistency, robustness to outliers and systematic errors by the use of hyperparameter weightings and robust Likelihood and Prior distribution choices. Furthermore, the framework's inherent transparency (e.g. our choice of probability functions and associated parameters) enables insights into the complex process of thermodynamic assessment. We introduce these concepts through examples where the true property model is known. In addition, we demonstrate the utility of the framework through the creation of a property model from a large set of experimental specific heat and enthalpy measurements of Hafnium metal from 0 to 4900K.

Keywords: properties materials; strategies uncertainty; uncertainty; bayesian strategies; thermodynamic properties; quantification

Journal Title: International Journal of Engineering Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.