Abstract In this paper, the complex viscoelastically coupled global mechanics of fluid-conveying microtubes is examined for the first time. The externally excited microtube is assumed to be embedded in a… Click to show full abstract
Abstract In this paper, the complex viscoelastically coupled global mechanics of fluid-conveying microtubes is examined for the first time. The externally excited microtube is assumed to be embedded in a nonlinear elastic medium. A scale-dependent theoretical model is presented with consideration of curvature nonlinearity within the context of the modified version of the couple stress theory (CST). According to Hamilton's energy/work principle, the coupled nonlinear equations of fluid-conveying microscale tubes are presented. Both the transverse and longitudinal displacements and inertia are taken into account in the continuum-based model and numerical calculations. In order to discretise the governing nonlinear differential equations, Galerkin's weighted-residual procedure is employed. The bifurcation characteristics of the fluid-conveying microsystem with clamped-clamped boundary conditions are obtained within the framework of a direct time-integration procedure. It is found that the complex global dynamics of the fluid-conveying microsystem is very sensitive to the speed of the flowing fluid.
               
Click one of the above tabs to view related content.