Abstract In this paper, a refined engineering rule for the assessment of remaining fatigue life of concrete under compressive cyclic loading with varying amplitudes is proposed. The rule has been… Click to show full abstract
Abstract In this paper, a refined engineering rule for the assessment of remaining fatigue life of concrete under compressive cyclic loading with varying amplitudes is proposed. The rule has been derived based on a combined numerical and experimental investigation of the loading sequence effect. The applied modeling approach is based on a damage model using the equivalent tensile strain rate to govern the fatigue damage evolution upon loading and reloading at subcritical load levels. A systematic calibration and validation procedure of the numerical model was performed based on the available experimental results. The prediction of the numerical model was compared with existing damage accumulation rules for the assessment of the concrete fatigue life exposed to varying loading ranges. Based on these studies, an enhancement of the Palmgren-Miner rule is proposed and validated for several loading sequence scenarios.
               
Click one of the above tabs to view related content.