Abstract Fatigue crack growth through different welded joint regions was investigated, in terms of welded joint geometry and fatigue crack position. In the first phase of investigation, numerical simulation of… Click to show full abstract
Abstract Fatigue crack growth through different welded joint regions was investigated, in terms of welded joint geometry and fatigue crack position. In the first phase of investigation, numerical simulation of crack growth in a welded joint made of steel P460NL1 was performed using extended Finite Element Methods (xFEM). Numerical models employed Paris law, using experimentally determined coefficients for each welded joint zone. Weld geometry was varied by using different heat affected zone (HAZ) widths, i.e. fatigue crack lengths. The second stage involved similar numerical models with different material (Protac 500). Fatigue lives for regions in both models were then compared.
               
Click one of the above tabs to view related content.