Abstract Herein, effects of SiC orientations and sizes on fatigue behaviors of SiCp/A356 composites are investigated. Results reveal longitudinal (LT) samples possess superior fatigue properties compared to transverse (TR) samples.… Click to show full abstract
Abstract Herein, effects of SiC orientations and sizes on fatigue behaviors of SiCp/A356 composites are investigated. Results reveal longitudinal (LT) samples possess superior fatigue properties compared to transverse (TR) samples. Adding 4.5 μm SiC, deformation mechanisms transfer from dislocation pile-ups along Si to along both SiC and Si, contributing to SiC decohesion and degradation of fatigue resistances. Adding 20 μm SiC, SiC decohesion prevails at TR sample since angle θ between SiC orientation and loading direction locates 45°-135°, while broken SiC particles are predominant at LT sample as θ 135°. These further decline their fatigue life.
               
Click one of the above tabs to view related content.