In this study, we show that phosphate decreases the spore heat resistance by accelerating the rate of loss of cations from spores. Heat resistance of spores of Geobacillus stearothermophilus A1,… Click to show full abstract
In this study, we show that phosphate decreases the spore heat resistance by accelerating the rate of loss of cations from spores. Heat resistance of spores of Geobacillus stearothermophilus A1, D1, P3 and ATCC 12980 were determined in distilled water containing varying concentrations (0.1, 1 and 2% w/v) of di‑sodium phosphate. The average decimal reduction times (D value) for strains A1, D1, P3 and ATCC 12980 in distilled water were 5.8, 6.8, 5.7 and 9 min at 110 °C respectively. On the addition of 0.1, 1 and 2% w/v of di‑sodium phosphate, the average D110 values of all the strains in distilled water were lowered by 50, 61 and 70% respectively. Addition of 0.05% w/v of Na-EDTA to distilled water resulted in lowering of the average D110 value of all the strains by 55%. Heat resistance of spores of A1, D1, P3 and ATCC 12980 was found to be associated with the Dipicolinic Acid (DPA) content whose concentrations were 0.25, 0.30, 0.27 and 1.6 pg per spore respectively. Analysis by atomic absorption spectroscopy revealed that the phosphate present in the heating medium causes excess release of calcium from spores with 2% w/v phosphate being highly effective, thus confirming the chelating effect of phosphate. This study provides insight into the heat resistance and the increased heat sensitivity of spores of G. stearothermophilus A1, D1 and P3 in the presence of phosphate, which can be used in the design of Cleaning in Place (CIP) systems involving phosphate based cleaning agents to combat biofilms and spores in the dairy industry.
               
Click one of the above tabs to view related content.