LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Occurrence, antimicrobial resistance and whole genome sequence analysis of Salmonella serovars from pig farms in Ilorin, North-central Nigeria.

Photo from wikipedia

Salmonella enterica is a foodborne pathogen of global public health importance with developing countries mostly affected. Foodborne outbreaks are often attributed to pork consumption and Salmonella contamination of retail pork… Click to show full abstract

Salmonella enterica is a foodborne pathogen of global public health importance with developing countries mostly affected. Foodborne outbreaks are often attributed to pork consumption and Salmonella contamination of retail pork is directly linked to the Salmonella prevalence on farm. The widespread use of antimicrobials at different steps of swine production can favor resistant strains of Salmonella. The objectives of this study are to characterize the distribution, multilocus sequence typing (MLST), plasmid, virulence profiles and antimicrobial resistance of Salmonella serovars circulating in selected pig farms. Six hundred fecal samples were randomly collected from nine selected farms in Ilorin, Nigeria. Isolates were analyzed by cultural isolation using selective media, conventional biochemical characterization, serotyping, MLST and whole genome sequencing (WGS). Sixteen samples were positive for Salmonella sub-species, comprising of nine serovars. The antimicrobial susceptibility results revealed low-level resistance against 13 antimicrobial agents. Five strains exhibited resistance to nalidixic acid and intermediate resistance to ciprofloxacin with chromosomal (double) mutation at gyrA and parC while four strains possessed single mutation in parC. Salmonella Kentucky showed double mutation each at gyrA and parC. WGS analysis, revealed eight diverse sequence types (STs), the most common STs were ST-321 and ST-19 (n = 4) exhibited by S. Muenster and S. Typhimurium, respectively. Single Nucleotide Polymorphism (SNP)-based phylogeny analysis showed the 16 isolates to be highly related and fell into 8 existing clusters at NCBI Pathogen Detection. Curtailing the spread of resistant strains will require the establishment of continuous surveillance program at the state and national levels in Nigeria. This study provides useful information for further studies on antimicrobial resistance mechanisms in foodborne Salmonella species.

Keywords: salmonella; analysis; antimicrobial resistance; resistance; salmonella serovars; sequence

Journal Title: International journal of food microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.