LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

U-Convolutional model for spatio-temporal wind speed forecasting

Abstract The increasing penetration of intermittent renewable energy in power systems brings operational challenges. One way of supporting them is by enhancing the predictability of renewables through accurate forecasting. Convolutional… Click to show full abstract

Abstract The increasing penetration of intermittent renewable energy in power systems brings operational challenges. One way of supporting them is by enhancing the predictability of renewables through accurate forecasting. Convolutional Neural Networks (Convnets) provide a successful technique for processing space-structured multi-dimensional data. In our work, we propose the U-Convolutional model to predict hourly wind speeds for a single location using spatio-temporal data with multiple explanatory variables as an input. The U-Convolutional model is composed of a U-Net part, which synthesizes input information, and a Convnet part, which maps the synthesized data into a single-site wind prediction. We compare our approach with advanced Convnets, a fully connected neural network, and univariate models. We use time series from the Climate Forecast System Reanalysis as datasets and select temperature and u- and v-components of wind as explanatory variables. The proposed models are evaluated at multiple locations (totaling 181 target series) and multiple forecasting horizons. The results indicate that our proposal is promising for spatio-temporal wind speed prediction, with results that show competitive performance on both time horizons for all datasets.

Keywords: spatio temporal; forecasting convolutional; convolutional model; temporal wind

Journal Title: International Journal of Forecasting
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.