LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing probabilistic forecasts of the daily minimum and maximum temperature

Photo from wikipedia

Abstract Understanding changes in the frequency, severity, and seasonality of daily temperature extremes is important for public policy decisions regarding heat waves and cold snaps. A heat wave is sometimes… Click to show full abstract

Abstract Understanding changes in the frequency, severity, and seasonality of daily temperature extremes is important for public policy decisions regarding heat waves and cold snaps. A heat wave is sometimes defined in terms of both the daily minimum and maximum temperature, which necessitates the generation of forecasts of their joint distribution. In this paper, we develop time series models with the aim of providing insight and producing forecasts of the joint distribution that can challenge the accuracy of forecasts based on ensemble predictions from a numerical weather prediction model. We use ensemble model output statistics to recalibrate the raw ensemble predictions for the marginal distributions, with ensemble copula coupling used to capture the dependency between the marginal distributions. In terms of time series modelling, we consider a bivariate VARMA-MGARCH model. We use daily Spanish data recorded over a 65-year period, and find that, for the 5-year out-of-sample period, the recalibrated ensemble predictions outperform the time series models in terms of forecast accuracy.

Keywords: minimum maximum; time series; ensemble predictions; temperature; daily minimum; maximum temperature

Journal Title: International Journal of Forecasting
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.