LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Process optimization of a fixed bed reactor system for direct air capture

Photo from wikipedia

Abstract The extraction of CO2 directly from the atmosphere (Direct Air Capture) is commonly employed using supported-amine sorbents. This adsorption technology is under rapid development with novel sorbent materials emerging… Click to show full abstract

Abstract The extraction of CO2 directly from the atmosphere (Direct Air Capture) is commonly employed using supported-amine sorbents. This adsorption technology is under rapid development with novel sorbent materials emerging and with processes being demonstrated on increasingly larger scale. Optimization of such processes requires accurate knowledge on sorbent characteristics and knowledge on how operational variables affect process performance. This study primarily focuses on the latter, where we aim to quantify the influence of operational parameters on the energy duty and CO2 productivity. In addition, we examine the influence of weather conditions on the adsorption rate. For this, we develop a dynamic model of the complete temperature-vacuum swing adsorption cycle (TVSA). This model was validated by experimental results on a kg-scale direct air capture system. The impact of selected operational variables was assessed by two-dimensional sensitivity analyses. We show that desorption temperature is preferably high, limited by the chemical stability of the sorbent material in this particular case. In addition, the sorbent working capacity should be high when opting for an optimization towards energy duty, whereas it reaches a clear optimum in terms of CO2 productivity. Finally, we conclude that weather conditions and diurnal variations can significantly affect the performance of a direct air capture process and should certainly be considered during design and operation. With these insights and the developed model, this study provides a sound basis for further process development and optimization of direct air capture using fixed bed technology combined with solid amine sorbents.

Keywords: optimization; air capture; process; direct air

Journal Title: International Journal of Greenhouse Gas Control
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.