LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Void fraction and pressure drop during external upward two-phase cross flow in tube bundles – part II: Predictive methods

Photo by kattrinnaaaaa from unsplash

Abstract The present paper is the Part II of a broad study concerning void fraction and pressure drop for air-water upward external flow across tube bundles. In the Part I,… Click to show full abstract

Abstract The present paper is the Part II of a broad study concerning void fraction and pressure drop for air-water upward external flow across tube bundles. In the Part I, the experimental facility and the data regression procedures were described and the experimental results are presented and discussed. Initially, Part II presents a literature review concerning void fraction and pressure drop predictive methods available in the open literature for two-phase upward flow across tube bundles. Next, the methods from literature are compared among them and with the database presented in paper Part I. Significant discrepancies are observed among the predictive methods, and deviations as high as two orders of magnitude are verified among the predicted values of pressure drop. Then, a new void fraction predictive method is proposed based on the experimental results and on the minimum kinetic energy principle. This method provides satisfactory predictions of the results described in paper Part I and also of independent data from the literature. A new predictive method for frictional pressure drop during two-phase flow based on two-phase multiplier is also proposed. This method predicted 94% of the experimental data obtained in the present study within an error margin of ± 30%, and also provides accurate predictions of independent results for triangular tube bundles gathered in the open literature.

Keywords: part; void fraction; two phase; pressure drop; tube bundles

Journal Title: International Journal of Heat and Fluid Flow
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.