LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Upscaling LBM-TPM simulation approach of Darcy and non-Darcy fluid flow in deformable, heterogeneous porous media

Photo by christinadera from unsplash

Abstract This paper presents a numerical approach for the simulation of fluid flow through porous media by proposing a theoretical and numerical meso-to-macro multiscale framework, which combines the advantages of… Click to show full abstract

Abstract This paper presents a numerical approach for the simulation of fluid flow through porous media by proposing a theoretical and numerical meso-to-macro multiscale framework, which combines the advantages of the lattice Boltzmann method (LBM) with the continuum Theory of Porous Media (TPM) to efficiently and accurately model fluid transport in heterogeneous porous media. In particular, LBM presents an alternative to experiments by studying the flow from a mesoscopic perspective, which in turn, allows the derivation of the material parameters needed for simulating the flow in the macroscopic TPM model. In this work, a meso-macro hierarchic upscaling scheme is applied to investigate the deformation-dependent intrinsic permeability properties and the Darcy/non-Darcy fluid flow regime. Concerning the mesoscale, the intrinsic permeability of the porous domain is computed by means of the LBM model at the first stage. Subsequently, deformation of the medium takes place in furtherance of determining the relation of the aforementioned deformation dependency. Thereupon, these findings are input into the TPM model in order to compute the primary unknown variables, where special focus is laid on the stability challenges in the compaction and near compaction states. With respect to the criteria of non-Darcy fluid flow, the conditions of its onset, i.e. the induced pressure gradient and mean fluid flow velocity, are computed as well using the LBM solver and conveyed afterwards to the macroscopic TPM model. Herein, the non-Darcy intrinsic permeability has been investigated in the TPM approach based on the Forchheimer equation. Simulations done on a synthetic porous micro-structure show that the combined framework proved to stand well between the two approaches.

Keywords: non darcy; darcy; porous media; fluid flow

Journal Title: International Journal of Heat and Fluid Flow
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.