LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Some new characteristics of the confined flow over circular cylinders at low reynolds numbers

Photo from wikipedia

Abstract This study summarises some new characteristics of the fluid flow over a confined circular cylinder at low Reynolds numbers. Results from both two- and three-dimensional direct numerical simulations are… Click to show full abstract

Abstract This study summarises some new characteristics of the fluid flow over a confined circular cylinder at low Reynolds numbers. Results from both two- and three-dimensional direct numerical simulations are presented at blockage ratio between 0.1 and 0.9 and Reynolds number between 120 and 500. Floquet stability analysis of selected cases will also be presented. From the two-dimensional simulations, it is found that the fluctuating lift forces decreases with blockage ratio and becomes zero (where the flow is steady) at blockage ratio of approximately 0.7–0.8. Upon further increasing the blockage ratio to 0.9, the simulations show a dramatic increase in the fluctuating lift forces, nearly an order of magnitude greater than previously reported for an unconfined cylinder flow. It is also found that for blockage ratio of 0.5, there is a long term two-dimensional instability that becomes more prominent with increasing Reynolds number. This instability has a time scale of approximately 105 time units ( D / U max ) at Reynolds number of 500. In addition, the transition between two- and three-dimensional flow at blockage ratios up to 0.5 is investigated. It is shown that the transition Reynolds number decreases with increasing blockage ratio. At high blockage ratio of 0.5, as we increase the Reynolds number, the transition to three-dimensional flow is shown to go from unsteady two-dimensional to steady three-dimensional before transitioning to unsteady three-dimensional flow.

Keywords: three dimensional; reynolds number; blockage ratio; blockage; flow

Journal Title: International Journal of Heat and Fluid Flow
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.