LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on biomass derived activated carbons for adsorptive heat pump application

Photo from wikipedia

Abstract Biomasses are renewable resources and suitable precursors for synthesis of activated carbons (ACs). Two biomass sources: (i) Waste Palm Trunk (WPT) and (ii) Mangrove (M) are employed to synthesis… Click to show full abstract

Abstract Biomasses are renewable resources and suitable precursors for synthesis of activated carbons (ACs). Two biomass sources: (i) Waste Palm Trunk (WPT) and (ii) Mangrove (M) are employed to synthesis activated carbons with huge surface area by chemical activation with potassium hydroxide (KOH). Thermophysical characteristics of the derived activated carbons namely thermal conductivity, particle size distribution, pore size distribution, surface area and pore volume are assessed. The total surface area of WPT-derived AC and mangrove-derived AC are found to be as high as 2927 m 2  g −1 and 2924 m 2  g −1 , respectively. The adsorption capacities of the synthesized biomass-derived ACs for ethanol are evaluated for assorted temperature and pressure conditions. It is observed that WPT-AC shows an ethanol uptake of 1.90 kg kg −1 whilst the M-AC can adsorb up to 1.65 kg kg −1 . The isosteric heat of adsorption associated with the present adsorbents/adsorbate (ACs/ethanol) calculated at different coverages showed only marginal difference. For a typical operating condition of adsorption heat pump, both biomass derived ACs showed similar net ethanol uptake which is significantly higher than the net uptake of commercially prevalent Maxsorb III AC.

Keywords: biomass; heat pump; derived activated; biomass derived; activated carbons

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.