LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of wettability due to laser-texturing on critical heat flux in vertical flow boiling

Photo from wikipedia

Abstract The critical heat flux (CHF) marks the upper limit of safe operation of heat transfer systems that utilize two-phase boiling heat transfer. In a heat-flux-controlled system, exceeding the CHF… Click to show full abstract

Abstract The critical heat flux (CHF) marks the upper limit of safe operation of heat transfer systems that utilize two-phase boiling heat transfer. In a heat-flux-controlled system, exceeding the CHF results in rapid temperature excursions which can be catastrophic for system components. Recent studies have focused on the influence of surface wettability on the departure from nucleate boiling (DNB) through surface modifications and coatings, though many of these studies are limited to pool boiling systems. In this study, the surface wettability influence is studied on the boiling curves and specifically the point of DNB. A femtosecond laser is used to texture the surface to change the wettability from hydrophilic to hydrophobic. A parametric study is performed with mass flux, pressure, and inlet subcooling in a vertical rectangular channel that is heated from one side. CHF excursions are triggered under various system conditions and are compared with existing models. For the experimental conditions considered, the hydrophobic surface showed delayed onset of nucleate boiling compared to the hydrophilic surface, shifting the boiling curves to higher wall superheat. The hydrophobic surface also showed significantly lower CHF for the same system conditions and less sensitivity to changes in subcooling.

Keywords: surface; critical heat; wettability; influence; heat; heat flux

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.