Abstract Thermal cloaks can thermally hide an object without disturbing background thermal field. The coordinate transformation method for designing conventional thermal cloaks face some challenges that the physical properties of… Click to show full abstract
Abstract Thermal cloaks can thermally hide an object without disturbing background thermal field. The coordinate transformation method for designing conventional thermal cloaks face some challenges that the physical properties of metamaterials are required to be anisotropic and inhomogeneous. Furthermore, the coordinate transformation is not applicable for complex geometrical conditions. In this study, a proactive thermal cloak is proposed. The cloak contains two concentric annular zones: one with high thermal conductivity and another with adaptive heat source. The cloaked zone is surrounded by the high thermal conductivity zone. The high thermal conductivity zone keeps the object in the cloaked zone from thermally being affected by outside zones. The heat source zone adjusts the background thermal field without any distortion. The thermal cloak with an analytical heat source distribution is presented for the 2D and 3D background thermal fields with uniform gradient. The adaptive heat source in the thermal cloak is designed by inverse problem theory of a numerical method for the 2D arbitrary background thermal field. This proactive thermal cloak can avoid the issue of anisotropic physical properties for the conventional thermal cloak designed with coordinate transformation method. The heat source thermal cloak with relatively easy implementation can manipulate temperature field proactively without contact. This thermal cloak is applicable for arbitrary background thermal fields and complex geometrical conditions by a numerical design approach. The proposed thermal cloak opens a new strategy to manipulate the thermal field with adaptive heat source.
               
Click one of the above tabs to view related content.