LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems

Photo from wikipedia

Abstract As ZnO nanoparticles had the advantages of high thermal conductivity and low cost, the possibility of using ZnO nanoparticles in spectral splitting photovoltaic/thermal (PV/T) systems was initially studied from… Click to show full abstract

Abstract As ZnO nanoparticles had the advantages of high thermal conductivity and low cost, the possibility of using ZnO nanoparticles in spectral splitting photovoltaic/thermal (PV/T) systems was initially studied from the perspective of optical properties. Water–ZnO and glycol–ZnO nanofluids were prepared via a two-step method and used for model validation and stability testing. The scheme employed to investigate the optical properties and radiative transfer of the nanofluids was developed using Mie scattering theory combined with the Monte Carlo ray tracing (MCRT) method. The overall effective spectral transmittance coefficients of PV cells were utilized for comprehensive evaluation of the spectral transmittances of the nanofluids in spectral splitting PV/T systems. The overall effective spectral transmittance of a PV cell water-ZnO nanofluids was 21.54% higher than that those of cells containing water–polypyrrole and water–Cu9S5 nanofluids, respectively. The effects of the nanoparticle diameter, mass concentration and the optical length of the nanofluid on the spectral transmittance of glycol–ZnO nanofluid were also investigated.

Keywords: optical properties; thermal systems; splitting photovoltaic; spectral splitting; photovoltaic thermal; nanofluids spectral

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.