LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solar thermal conversion and thermal energy storage of CuO/Paraffin phase change composites

Photo by kaitlynraeann from unsplash

Abstract A nanofluid phase change material (PCM) is prepared by adding a small amount of CuO nanopowders to paraffin, for use in solar thermal conversion, thermal storage, and thermoelectric applications.… Click to show full abstract

Abstract A nanofluid phase change material (PCM) is prepared by adding a small amount of CuO nanopowders to paraffin, for use in solar thermal conversion, thermal storage, and thermoelectric applications. Results show that adding CuO nanopowders to paraffin can greatly improve the solar thermal conversion capacity by enhancing the light absorption ability of PCMs. The steady temperature increased with increasing mass fraction of CuO NPs at low mass concentrations (0–0.1%). The largest increase was about 2.3 times that of the pure paraffin with comparable latent heat. In the solar thermoelectricity experiments, the open-circuit voltage improved (1.35 V) with the CuO/Paraffin composite (fm = 0.1%) under the same conditions, and was almost 1.8 times that of the pure paraffin. More importantly, a unique feature of the CuO/Paraffin composite PCM is the extension of thermal release, which enables the continuation of the voltage output when the solar simulator is switched off. The introduction of a very low mass concentration of CuO nanopowders can endow the composite PCMs with strong solar absorption ability, and contribute to realizing efficient solar thermal and solar thermoelectric energy conversion and storage. This provides a new prospect for solar radiation usage efficiency and direct solar energy conversion and utilization.

Keywords: cuo; conversion; cuo paraffin; storage; thermal conversion; solar thermal

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.