LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On trade-off for dispersion stability and thermal transport of Cu-Al2O3 hybrid nanofluid for various mixing ratios

Photo by sasotusar from unsplash

Abstract The dispersion stability and thermophysical properties of metal–metal oxide hybrid nanofluid for various mixing ratios are investigated in this paper. Cu nanoparticles having high thermal conductivity and poor dispersion… Click to show full abstract

Abstract The dispersion stability and thermophysical properties of metal–metal oxide hybrid nanofluid for various mixing ratios are investigated in this paper. Cu nanoparticles having high thermal conductivity and poor dispersion stability are dispersed in water with Al2O3 nanoparticles that have a high dispersion stability and low thermal conductivity, in mixing ratios 0.3:0.7 (MR-1), 0.5:0.5 (MR-2) and 0.7:0.3 (MR-3) to achieve a Cu-Al2O3 hybrid nanofluid with improved hydrothermal properties. Dispersion stability and thermophysical properties of the hybrid nanofluid were studied for 240 h using various experimental techniques such as zeta/particle size analyser, UV–Vis spectroscopy, transmission electron microscope, sedimentation, thermal analyser and viscometer. The results show that the hybrid nanofluid transforms into low, medium and high concentration stratified zones over time. Also, stability in Cu/Al2O3 single particle nanofluids and MR-3 hybrid nanofluid is related to both sedimentation velocity and zeta potential while sedimentation velocity has the dominating effect on stability of MR-1 and MR-2 hybrid nanofluids. Mixing ratio above MR-2 is identified for rapid settling due to high sedimentation velocity. Also, MR-2 is determined as an optimum mixing ratio to achieve enhanced overall hydrothermal properties for the hybrid nanofluid due to its improved thermal conductivity and relatively better stability.

Keywords: mixing ratios; nanofluid various; stability; hybrid nanofluid; dispersion stability

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.