LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation

Photo from wikipedia

Abstract Results of numerical calculations and their comparison with analytical expressions or experimental data under laminar and turbulent flow conditions are reported. It is predicted the transient and steady-state behaviour… Click to show full abstract

Abstract Results of numerical calculations and their comparison with analytical expressions or experimental data under laminar and turbulent flow conditions are reported. It is predicted the transient and steady-state behaviour of mass-transfer coefficients and shear stresses in electrochemical reactors composed of rotating electrodes. Computational fluid dynamics (CFD) simulations were performed for both the rotating disc electrode (RDE) and the rotating cylinder electrode (RCE) considering the laminar or Reynolds-Averaged Navier-Stokes (RANS) equations. In this last case, it was assumed the Shear Stress Transport (SST) k-ω turbulence model sensitised by a correction term that accounts for streamline curvature and rotation. The hydrodynamics, coupled to the averaged diffusion-convection equation under transient conditions, was solved using the open source software OpenFOAM. A good agreement was attained between simulations and experimental or analytical results. In both rotating systems, a steady-state can be reached with an oscillatory behaviour that can be periodic in the case of laminar flow; depending on the Schmidt number, the interelectrode gap and the hydrodynamics. Also, the uniformity of the mass-transfer coefficient is lost under some circumstances. Finally, the full numerical code and a tutorial on how to use it, in order to perform simulations for the RDE or RCE, are supplied.

Keywords: laminar turbulent; turbulent flow; mass; mass transfer

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.