LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model

Photo from wikipedia

Abstract A multi-component multi-phase thermal lattice Boltzmann model considering vapor-liquid phase change is developed to study droplet condensation with the presence of non-condensable gas. Some tests, including an isolated droplet… Click to show full abstract

Abstract A multi-component multi-phase thermal lattice Boltzmann model considering vapor-liquid phase change is developed to study droplet condensation with the presence of non-condensable gas. Some tests, including an isolated droplet evaporation, are conducted to verify the capability of this model in simulating multi-component multi-phase flow with vapor-liquid phase change. After that, single droplet condensation considering non-condensable gas is investigated with different mass fraction of non-condensable component and contact angles. The results show that the influence of the non-condensable gas upon droplet condensation heat transfer is depended on the growth stage and the amount of the non-condensable gas. The mass transfer of vapor and non-condensable component will tend to an equilibrium state with the droplet condensation going. Furthermore, for different contact angles, the dynamic behavior of the contact line plays a critical role in the accumulation effect of the non-condensable component. And the heat transfer of droplet condensation is enhanced by the hydrophilic substrate rather than the hydrophobic substrate as expected, no matter adding the non-condensable component or not. In different conditions, the power law, which fits the droplet radius with time, is used to define the growth rate mathematically.

Keywords: droplet condensation; component; non condensable; multi

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.