LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oscillatory instability of a 3D natural convection flow around a tandem of cold and hot vertically aligned cylinders placed inside a cold cubic enclosure

Photo from wikipedia

Abstract The oscillatory instability of a 3D natural convection flow in a cold cubic enclosure containing a tandem of cold and hot vertically aligned cylinders is investigated in detail as… Click to show full abstract

Abstract The oscillatory instability of a 3D natural convection flow in a cold cubic enclosure containing a tandem of cold and hot vertically aligned cylinders is investigated in detail as a function of the distance between the cylinders. The study is performed by applying time integration of slightly supercritical flows. The flows undergo a transition to unsteadiness via either reflectional symmetry breaking or reflectional symmetry preserving Hopf bifurcation as a function of the distance between the cylinders. An extensive discussion of the observed instability scenarios is presented, and the different instability mechanisms are characterized in terms of the values of the main oscillating harmonics and the spatial distribution of the oscillating amplitudes of all the fields obtained for slightly supercritical flows.

Keywords: instability; instability natural; oscillatory instability; cold cubic; natural convection; convection flow

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.