LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Laminar Convective Heat Transfer Over Structured Non-Wetting Surfaces

Photo from wikipedia

Abstract Structured non-wetting surfaces provide alternating no-slip and partial slip boundary conditions to the fluid flow which, in turn, affects the convective heat transfer performance over the surfaces. In this… Click to show full abstract

Abstract Structured non-wetting surfaces provide alternating no-slip and partial slip boundary conditions to the fluid flow which, in turn, affects the convective heat transfer performance over the surfaces. In this paper, an analytical model is developed for the interfacial Nusselt number, the overall Nusselt number and a thermal hydraulic performance factor for fluid flow in a cylinder patterned with structured non-wetting surfaces, for the two cases of uniform wall heat flux and uniform wall temperature. In addition, by considering the stability of the Cassie state of wettability and its transition to the Wenzel state for flow over superhydrophobic surfaces, the present model overcomes certain limitations of the previously reported studies in the literature. Based on the analytical formulations and the stability constraints, the present paper provides optimum design maps for tailoring structured non-wetting surfaces for maximizing convective heat transfer and the combined thermal-hydraulic performance in applications. Use of the design maps on example cases is also discussed. It is shown that the use of structured non-wetting surfaces is most effective for low Reynolds numbers and/or small cylinder radius.

Keywords: convective heat; wetting surfaces; transfer; structured non; non wetting

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.