LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Maxwell's equations explain why irreversible electroporation will not heat up a metal stent

Photo by viazavier from unsplash

Abstract Irreversible Electroporation (IRE) is a promising clinical ablation therapy for the treatment of cancer, but issues with the generation of heat must be solved before safe and effective clinical… Click to show full abstract

Abstract Irreversible Electroporation (IRE) is a promising clinical ablation therapy for the treatment of cancer, but issues with the generation of heat must be solved before safe and effective clinical results can be obtained. In the present study, we show that a metal stent will not be noticeably heated up by IRE pulses under typical clinical conditions. Derivation of this non-intuitive result required the application of Maxwell's equations to the tissue-stent configuration. Subsequently, straightforward and arguably accurate simplifications of the electric field generated by two needles in tissue surrounding a metal stent have enabled the modeling of the heat generation and the transport of heat in IRE procedures. Close to a stent that is positioned in between two needles, temperatures in a typical run of 100 s, 1 Hz pulses, may remain notably lower than without the stent. This is the explanation of the experimentally observed low temperature rim of viable tissue around the stent, whereas all tissue was non-viable without stent, found in tissue model experiments.

Keywords: heat; metal stent; maxwell equations; irreversible electroporation; stent

Journal Title: International Journal of Heat and Mass Transfer
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.