LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Life Cycle Assessment of lithium battery and hydrogen-FC powered electric bicycles: Searching for cleaner solutions to urban mobility

Photo from wikipedia

Abstract Smart mobility is day by day becoming one of the crucial issues to address in order to reduce environmental impacts such as global warming, acidification, photochemical smog, among others.… Click to show full abstract

Abstract Smart mobility is day by day becoming one of the crucial issues to address in order to reduce environmental impacts such as global warming, acidification, photochemical smog, among others. The growing concerns about urban air quality are the driving force for cleaner and more efficient transport systems. Several new transport technologies are being developed, in particular concerning electric vehicles, considered a suitable solution to urban air pollution problems. However, these vehicles require electric and electronic devices that might give rise to a new set of environmental problems in their production, operation and disposal phases. Are electric vehicles a really cleaner solution? This paper aims at answering this question, by comparing two kinds of vehicle, a lithium battery powered electric bike and a hydrogen-fuel cell operated one, using internal combustion engine vehicles as benchmark. The fuel cell bike uses a proton exchange membrane fuel cell (PEMFC) to convert hydrogen into electricity. In this study, Life Cycle Assessment is applied to evaluate the environmental burdens of the production of these two vehicles and compare their environmental performances per 100 km travelled. The study, not only includes vehicle road operation but also embraces production and distribution of bikes, electric battery, PEMFC and energy carriers (electricity and hydrogen) over the vehicle's entire lifetime. The LCA evaluation of the vehicle production phases shows that the construction of the H-bike results more impacting than the E-bike in all the considered categories due to the presence of more complex components technology. Instead, when the boundary is shifted to the operational phases of the vehicles including the energy carriers production, the situation is reversed and the environmental performance of the H-bike results better than the one of E-bike.

Keywords: production; hydrogen; lithium battery; powered electric; bike

Journal Title: International Journal of Hydrogen Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.