LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling of hydrogen induced pressurization of internal cavities

Photo by spacexuan from unsplash

Abstract Internal cavities can constitute a crack initiation site especially if filled with hydrogen at high pressure. A new refined equation of state based on recent NIST database has been… Click to show full abstract

Abstract Internal cavities can constitute a crack initiation site especially if filled with hydrogen at high pressure. A new refined equation of state based on recent NIST database has been introduced in order to model the equilibrium pressure. It is based on a thermodynamic definition of fugacity and uses the NIST data relating hydrogen density and pressure to define a new fugacity pressure quadratic dependence. The resulting Equation Of State (EOS) is compared to the standard Abel–Noble EOS and it is shown that for a given fugacity, imposed by a Sievert's law, the corresponding pressure is significantly higher. This new refined EOS was introduced into a previously developed numerical model of hydrogen diffusion and desorption and applied to evaluate the kinetics of pressure build-up within a cavity and its equilibrium pressure. It has been shown that the kinetics of pressure build-up at room temperature, which reaches values close to equilibrium in some hundreds of hours, is compatible with the industrial quality control procedures. The calculated pressures are in the range 4500–8650 bars depending on hydrogen solubility, which differs between the matrix and the segregation bands, and tend to equilibrium values obtained from mass balance approach.

Keywords: pressure; hydrogen; hydrogen induced; modelling hydrogen; induced pressurization; internal cavities

Journal Title: International Journal of Hydrogen Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.