LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A numerical study on combustion and emission characteristics of premixed hydrogen air flames

Photo from wikipedia

Abstract Main challenges for micro power generators that utilize combustion process for energy production are inadequate residence time, destructive radical wall interactions and intensified heat loss which are mainly rooted… Click to show full abstract

Abstract Main challenges for micro power generators that utilize combustion process for energy production are inadequate residence time, destructive radical wall interactions and intensified heat loss which are mainly rooted from size limitation of such devices. To achieve high and uniform energy output, and bring in a solution to these challenges in an environment friendly manner without any kind of fundamental modification, effect of equivalence ratio on combustion and emission behavior of premixed hydrogen/air flames is numerically investigated in this study. For this purpose, an experimentally tested micro cylindrical combustor model is constructed and premixed hydrogen/air combustion in this model is simulated by varying equivalence ratio between 0.5 and 1.2 to find an optimal equivalence ratio with respect to drawbacks of micro power generators. Combustion and turbulence models implemented in this study are Eddy Dissipation Concept and Standard k-e models, respectively. A detailed hydrogen/air reaction mechanism which consists of 9 species and 19 steps is employed to accurately gain insight into combustion process. Simulation results show that as the equivalence ratio decreases; centerline temperature distribution gets a lower value and the place where chemical reactions take place moves downstream. The most uniform temperature distribution is achieved between 0.8 and 1.0 equivalence ratios. The highest NO x formation is at 0.9 equivalence ratio and its mass fraction decreases sharply when the equivalence ratio reduces from 0.9 to 0.5.

Keywords: hydrogen air; combustion; equivalence ratio; hydrogen

Journal Title: International Journal of Hydrogen Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.