LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging

Photo from wikipedia

Abstract In this study, ex-situ experiments performed with a point injection device are conducted to evaluate water distributions in gas diffusion layer (GDL) materials which serve as porous transport media… Click to show full abstract

Abstract In this study, ex-situ experiments performed with a point injection device are conducted to evaluate water distributions in gas diffusion layer (GDL) materials which serve as porous transport media in polymer electrolyte membrane fuel cells (PEMFCs). In this regard, GDL samples manufactured by SGL Group are placed into the point injection device and visualized by means of synchrotron X-ray radiographic and tomographic imaging. The resulting image data undergoes a coordinate transformation that ascertains water agglomerations in GDL pores with regard to their radial displacements from the injection point. In this way, water transport in two different GDL samples possessing the same structural characteristics, but with unique compression rates, are investigated in terms of in-plane water distribution. The radial displacement analysis indicated that the pore saturation of the compressed GDL is higher in both the micro porous layer (MPL) region and the carbon fiber substrate region than that of the uncompressed GDL. The water agglomerations in the uncompressed GDL are predominantly observed in the vicinity of the injection point, indicating a limited in-plane transport. Conversely, in the compressed case water accumulations are detected far from the injection point, even at the edge of the GDL, pointing out that compression promotes the in-plane transport. Prior to the ex-situ experiments, both GDL samples have undergone an ageing procedure to mimic realistic cell operating conditions.

Keywords: water; point injection; point; injection device

Journal Title: International Journal of Hydrogen Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.