LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical study of hydrogen–oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun

Photo from wikipedia

Abstract A large eddy model with detailed chemical reaction mechanism is developed to investigate the interior ballistic process of the combustion light gas gun (CLGG). Flame acceleration and deflagration to… Click to show full abstract

Abstract A large eddy model with detailed chemical reaction mechanism is developed to investigate the interior ballistic process of the combustion light gas gun (CLGG). Flame acceleration and deflagration to detonation transition process with high initial pressure and low initial temperature hydrogen–oxygen mixture in CLGG is numerically studied. Simulation results indicate that the hydrogen–oxygen flame propagation experiences an exponential acceleration stage, a nearly uniform propagation stage and a fast reacceleration stage. Detonation can be triggered through two different mechanisms, which are the amplification between the overlapped shock wave at flame surface, and the elevated flame velocity and shock strength caused by local explosions. Reflected shock waves play an important role in the suppression of the flame propagation when the flame front is close to the chamber throat, leading to a deceleration of the deflagration flame.

Keywords: hydrogen oxygen; flame; hydrogen; acceleration; deflagration; detonation

Journal Title: International Journal of Hydrogen Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.