Abstract Electricity and water from renewable hydropower plant are used as input for electrolysis unit to generate hydrogen, while CO2 is captured from 600 MW supercritical coal power plant using post-combustion… Click to show full abstract
Abstract Electricity and water from renewable hydropower plant are used as input for electrolysis unit to generate hydrogen, while CO2 is captured from 600 MW supercritical coal power plant using post-combustion chemical solvent based technology. The captured CO2 and H2 generated through electrolysis are used to synthesize methanol through catalytic thermo-chemical reaction. The methanol synthesis plant is designed, modeled and simulated using commercial software Aspen Plus®. The reactor is analyzed for two widely adopted kinetic models known as Graaf model and Vanden-Bossche (VB) model to predict the methanol yield and CO2 conversion. The results show that the methanol reactor based on Graaf kinetic model produced 0.66 tonne of methanol per tonne of CO2 utilized which is higher than that of the VB kinetic model where 0.6 tonne of methanol is produced per tonne of CO2 utilized. The economic analysis reveals that 1.2 billion USD annually is required at the present cost of both H2 production and CO2 abatement to utilize continuous emission of 3.2 million tonne of CO2 annually from 600 MW supercritical coal power unit to synthesize methanol. However, sensitivity analysis indicates that methanol production becomes feasible by adopting anyone of the route such as by increasing methanol production rate, by reducing levelised cost of hydrogen production, by reducing CO2 mitigation cost or by increasing the current market selling price of methanol and oxygen.
               
Click one of the above tabs to view related content.