Abstract This study systematically investigates the detailed mechanism of nitrogen oxides (NOx) in CH4 and CH4/H2 jet flames with O2/CO2 hot coflow. After comprehensive validation of the modeling by experiments… Click to show full abstract
Abstract This study systematically investigates the detailed mechanism of nitrogen oxides (NOx) in CH4 and CH4/H2 jet flames with O2/CO2 hot coflow. After comprehensive validation of the modeling by experiments of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147–1154]; the effects of CO2 replacement of N2, mass fraction of oxygen in the coflow (YO2), and mass fraction of hydrogen in the fuel jet (YH2) on NO formation and destruction are investigated in detail. For methane oxy-fuel combustion, the NNH route is found to control the NO formation at YO2 ≤ 3%, while both NNH and N2O-intermediate routes dominate the NO production at 3%
               
Click one of the above tabs to view related content.