LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells

Photo by kellysikkema from unsplash

Abstract The blend polymer membranes were synthesized from the methylimidazolium poly (aromatic ether ketone) (MeIm-PAEK) and fluoropolymers (PVDF and PVDF-HFP) with excellent thermal stability and improved dimensional stabilities for high-temperature… Click to show full abstract

Abstract The blend polymer membranes were synthesized from the methylimidazolium poly (aromatic ether ketone) (MeIm-PAEK) and fluoropolymers (PVDF and PVDF-HFP) with excellent thermal stability and improved dimensional stabilities for high-temperature polymer electrolyte fuel cells. The MeIm-PAEK exhibited good compatibility with PVDF or PVDF-HFP without phase separation. High phosphoric acid doping contents of the blend membranes were achieved at elevated temperatures with acceptable swellings. The acid doped blend membranes displayed lower dimensional swellings and higher mechanical strength compared to the MeIm-PAEK membrane, which allowed the blend membranes to obtain higher acid doping contents and proton conductivities. The MeIm-PAEK/10%PVDF membrane with a phosphoric acid doping content of 700 wt% showed a proton conductivity as high as 0.192 S cm−1 at 180 °C under the non-humidified condition and a tensile strength of 4.3 MPa at room temperature.

Keywords: poly aromatic; temperature; meim paek; ether ketone; high temperature; aromatic ether

Journal Title: International Journal of Hydrogen Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.