LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells

Photo from wikipedia

Abstract Gas bubble dynamics and two-phase flow have a significant impact on the performance and efficiency of proton exchange membrane electrolyzer cells (PEMECs). It has been strongly desired to develop… Click to show full abstract

Abstract Gas bubble dynamics and two-phase flow have a significant impact on the performance and efficiency of proton exchange membrane electrolyzer cells (PEMECs). It has been strongly desired to develop an effective experimental method for in-situ observing the high-speed/micro-scale oxygen bubble dynamics and two-phase flow in an operating PEMEC. In this study, the micro oxygen bubble dynamic behavior and two-phase flow are in-situ visualized through a high-speed camera coupled with a specific designed transparent PEMEC, which uses a novel thin liquid/gas diffusion layer (LGDL) with straight-through pores. The effects of different operating conditions on oxygen bubble dynamics, including nucleation, growth, and detachment, and two-phase flow have been comprehensively investigated. The results show that temperature and current density have great effects on bubble growth rate and reaction sites while the influence of flow rate is very limited. The number, growth rate, nucleation site, and slug flow regime of oxygen gas bubbles increase as temperature and/or current density increases, which indicates that an increase in temperature and/or current density can enhance the oxygen production efficiency. Further, a mathematical model for the bubble growth is developed to evaluate the effects of temperature and current density on the bubble dynamics. A mathematical model has been established and shows a good correlation with the experimental results. The studies on two-phase flow and high-speed micro bubble dynamics in the microchannel will help to discover the true electrochemical reaction at micro-scale in an operating PEMEC.

Keywords: phase flow; two phase; bubble dynamics; dynamics two

Journal Title: International Journal of Hydrogen Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.