LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strengthening mechanism and hydrogen-induced crack resistance of AISI 316L stainless steel subjected to laser peening at different power densities

Photo from wikipedia

Abstract Microstructural response of AISI 316L stainless steel to laser peening (LP) was examined by means of optical microscopy (OM) and transmission electron microscopy (TEM) in order to analyze the… Click to show full abstract

Abstract Microstructural response of AISI 316L stainless steel to laser peening (LP) was examined by means of optical microscopy (OM) and transmission electron microscopy (TEM) in order to analyze the effects of LP on hydrogen-induced cracking (HIC) resistance. Depth profiles of near-surface microhardness and surface compressive residual stress (CRS) of LP treated specimens were presented respectively. Slow strain rate tensile tests were performed on the hydrogen-charged samples and their corresponding stress-strain curves as well as fracture morphologies were finally investigated in detail. The results demonstrated that LP induced a grain refinement effect on the treated surface while a maximum refining rate of 56.18% was achieved at the laser power density of 10 GW/cm2. The near-surface microhardness also exhibited an attenuation trend with the increasing depth. The surface CRS positively correlated with power density before it reached a threshold value. A special U-shaped dislocation tangle band was observed in the LP treated specimen which served as hydrogen trapping sites. The LP treated samples exhibited better toughness after hydrogen charging from both macro mechanical properties and micro fracture morphologies. LP-induced grain refinement and CRS are believed to be the main contributing factors towards inhibiting the diffusion of hydrogen atoms which ultimately leads to the reduction of the hydrogen embrittlement sensitivity of AISI 316L stainless steel.

Keywords: microscopy; hydrogen; stainless steel; aisi 316l; 316l stainless

Journal Title: International Journal of Hydrogen Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.