LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrothermal gasification of microalgae over nickel catalysts for production of hydrogen-rich fuel gas: Effect of zeolite supports

Photo by rockstaar_ from unsplash

Abstract A series of Ni catalysts with different zeolites were prepared by wet impregnation method and used to catalyze supercritical water gasification (SCWG) of microalgae for production of hydrogen-rich fuel… Click to show full abstract

Abstract A series of Ni catalysts with different zeolites were prepared by wet impregnation method and used to catalyze supercritical water gasification (SCWG) of microalgae for production of hydrogen-rich fuel gas under conditions of 430 °C, 60 min, ρH₂O = 0.162 g/cm3, 2 g/g Ni/zeolites. Compared with noncatalytic SCWG, the presence of Ni/zeolite could increase the hydrogen gasification efficiency and carbon gasification efficiency by promoting water–gas shift and steam reforming reactions which are mainly affected by the amount of strong acid sites and Ni, respectively. The highest carbon gasification efficiency (CGE) and hydrogen gasification efficiency (HGE) of 23.61% and 23.55% were achieved with Ni/HY (Na2O, 0.8%). The gaseous produced mainly consisted of H2 and CO2. The H2 content in the gaseous products varied from 27.15 to 40.51% depending on the Ni/zeolites and increased with increasing the SiO2/Al2O3 molar ratio of HZSM-5, which is 2.3–3.6 times higher than that of produced without catalyst. The H2 yield varied between 2.57 and 3.61 mmol/g depending on the Ni/zeolites and increased from 2.19 to 5.61 mmol/g with increasing the SiO2/Al2O3 molar ratio from 50:1 to 170:1, which is 3.6–7.8 times higher than that of produced without catalyst. Coke formation, surface area loss, and sintering of Ni could decrease the activity of the Ni/zeolites.

Keywords: gas; production hydrogen; hydrogen rich; hydrogen; rich fuel; gasification

Journal Title: International Journal of Hydrogen Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.